If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+80x-200=0
a = 1; b = 80; c = -200;
Δ = b2-4ac
Δ = 802-4·1·(-200)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-60\sqrt{2}}{2*1}=\frac{-80-60\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+60\sqrt{2}}{2*1}=\frac{-80+60\sqrt{2}}{2} $
| (1/4)^x-4=3*2^-x | | 49=7x+7 | | 3(2+a)=30 | | (1-3x)(x-2)+3(2-x)^2=0 | | 3/x=185 | | 4x^2+42x-100=0 | | 2x+5/2=3x-1/6 | | y=6-5-3-52+24 | | X+4/2=x-5/3+5 | | 3x(4-5x)=(2x-3)(5x-4) | | 10x^2-23x+12=-15x^2+12x | | X-(5x+2)=3x-3 | | 85+2x-17=180 | | 2X+12=x/3+27 | | |x^2-3x-20|=-x^2+3x+2 | | -x2+10x+1=0 | | (6x+1)(3x+2)=(9x-1)(2x+5)-3x | | X÷2-x÷5=3 | | 10(7)=n | | 7t=t+8 | | 5x+7+4x+11+3x=54 | | 2x+10+5x+30=180 | | 2x-15+45=180 | | 3x+20+2x+10=90 | | F(x)=5x^2-4x^2+10 | | (x-5)^2-3x+15=0 | | 6/8=3a/22 | | 6.3x+7=12 | | 6=-3/4x+6 | | 21÷f=3 | | 15+5b=50 | | 2a/13=2 |